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Abstract. The inverse dynamic model allows to compute the torques
for each of the degrees of freedom of a robot knowing the positions,
velocities and accelerations. In contrast, direct dynamic model is used to
calculate the positions, velocities and accelerations knowing the torques
for each of the degrees of freedom. Most of the times is difficult to obtain
the direct dynamic model analytically because it is given by solution of
the differential equations for each variable. For that reason, we propose
to compute the positions, velocities and accelerations from the inverse
dynamic model using a simple and powerful intelligent algorithm called
Particle Swarm Optimization (PSO) without needing to obtain the direct
dynamic model.

Keywords: PSO, inverse robot dynamic model.

1 Introduction

Modelling the robot dynamics allows to understand the relationship between
the movement of the robot links and its forces. This relationship is obtained by
dynamic models which relate mathematically:

1. The location of the robot defined by their joint variables: Position, velocity
and acceleration.

2. The forces and torques applied to the joints.
3. Robot dimensional parameters, such as length, mass and inertia of their

elements.

A method to obtain the robot dynamic model of n degrees of freedom with
rigid links, is given by the equations of motion Euler-Lagrange [6, 1]. The La-
grangian  L is defined as the difference of the kinetic energy K and potential
energy U :

 L = K − U
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Then, the inverse dynamic model is expressed by the n equations of Euler-
Lagrange:

d

dt

∂  L

∂q̇i
− ∂  L

∂qi
= τi (1)

where qi is the joint position, q̇i is the joint velocity, and τi is the force (or
torque) of the i-th link and i = 1, 2, ..., n. The inverse dynamic model (1) can be
rewritten in their compact form and notation most widely used in robotics [2,
9]:

τ = D(q)q̈ + C(q, q̇)q̇ +G(q) + Fcsign(q̇) + Fv q̇ (2)

where τ ∈ <n, q ∈ <n, q̇ ∈ <n, q̈ ∈ <n denote the vectors of applied
torques, position, velocity, and acceleration in the robot joints, respectively.
D(q) ∈ <n×n is the inertia matrix, C(q, q̇) ∈ <n×n is the Coriolis and centripetal
matrix, G(q) ∈ <n is the gravity vector, Fc ∈ <n×n is the Coulomb friction and
Fv ∈ <n×n is the viscous friction.

The goal of this article is to get positions, velocities and accelerations satis-
fying the inverse dynamic model (2) without solving the n differential equations
(1) because most of the time is very difficult solve them. We propose in this
work the use of Particle Swarm Optimization (PSO). PSO and Evolutionary
Algorithms are optimization tools that are inspired by natural phenomena.The
PSO, in particular, was motivated by the simulation of bird flocking or fish
schooling. PSO was first introduced by Kennedy and Eberhart in 1995 [7].

In recent years, the relationship between the dynamic models and Intelligent
Systems as PSO has been an important merger, since the Intelligent Systems
have started to get several applications in robotics as:

⇒ In parameter estimation of robot dynamics because most of the times is
very difficult to know the exact parameters or even impossible to obtain all the
parameters [5].
⇒ For obtaining the positions, velocities and accelerations of the inverse dynamic
model [4].
⇒ In the control of swarm robots [3].

The rest of document is organized as follows: In the next section, the PSO
is presented. In Section 3, the inverse dynamic model of three study cases are
shown. Experimental results from simulations with PSO are illustrated in Section
4. Finally, some conclusions are given.

2 Particle Swarm Optimization

The PSO algorithm [5, 8, 11] assigns a swarm of k particles to search for the
optimal solution in a m-dimensional space, where m is the amount of position
components in each and every one of particles. The optimal solution to the prob-
lem consists in that any particle find a point or trajectory in the m-dimensional

34

Carlos Alberto Yahir Hervert Cano, Angel Rodríguez-Liñán, Luis M. Torres-Treviño

Research in Computing Science 68 (2013)



space that minimize some fitness function f(x). The starting position of a particle
is randomly set within the range of possible solutions to the problem. The range is
based on an intuitive guess of the maximum and minimum possible values of each
component of the particle positions p. For the i-th particle is valued the fitness
function pbi = f(pi) of its current position pi ∈ <m that determined the current
best pbi,t in the t-th iteration, with t = {1, 2, ..., id} as the number of iterations,
and has memory of its own best experience Pbest,i ∈ <m, which is compared
to pbi,t in t-th iteration, and is replaced by pbi,t if f(pi(t)) < f(Pbest,i(t − 1)).
Besides its own best experience, each particle has knowledge of the best expe-
rience achieved by the entire swarm, that is the global best experience denoted
by Gbest ∈ <m such that f(Gbest) = mini(f(Pbest,i)). Based on the data each
agent has, its velocity in the t-th iteration is determined by

vi(t) = wvi(t− 1) + c1r1(Pbest,i(t)− pi(t)) + c2r2(Gbest(t)− pi(t)) (3)

where vi ∈ <m is the velocity of i-th particle, w ∈ < is the inertia weight, c1 ∈ <
is a constant positive cognitive learning rate, c2 ∈ < is a constant positive social
learning rate, r1 ∈ [0, 1] and r2 ∈ [0, 1] are random numbers re-generated at each
iteration.

The position of each particle at the (t+ 1)-th iteration is updated by:

pi(t+ 1) = pi(t) + vi(t) (4)

After predefined conditions are satisfy, the algorithm stops and the Gbest at
the latest iteration is taken as the optimal solution to the problem.

In this work, the PSO is used to obtain an estimated value of position q,
velocity q̇ and acceleration q̈ of n joints of a robot for each iteration, where we
know the torque τ and inverse dynamic model (2). Then, the estimated torque
is given by

τ̂ = D(q̂)¨̂q + C(q̂, ˙̂q) ˙̂q +G(q̂) + Fcsign( ˙̂q) + Fv
˙̂q (5)

where q̂ ∈ <n, ˙̂q ∈ <n and ¨̂q ∈ <n are the estimated position, velocity and
acceleration by PSO, respectively. Defining the estimation error ei(t) ∈ <n for
the i-th particle in the t-th iteration

ei(t) = ‖τ − τ̂i(t)‖1 (6)

where ‖ · ‖1 is the norm-1. Let f : <n → < be the fitness function to be
optimized, which compute the average error [10]

f(ei) =
(ei,1 + ei,2 + ...+ ei,n)

n
(7)

for n freedom degrees.

The objective of the PSO algorithm in the estimation task is to find the i-th
set of variables q, q̇, q̈ that minimizes the function f(ei).

35

Use of PSO for Obtaining Solution of the Inverse Robot Dynamic Model

Research in Computing Science 68 (2013)



3 Inverse Robot Dynamic Model

In this section, 3 manipulator models are shown in order of estimate their posi-
tion, velocity and acceleration by means of the PSO algorithm presented. In the
3 cases, friction effects was not taken into account in the inverse dynamic models.

Case 1: Simple pendulum.

The inverse dynamic model of the simple pendulum without friction shown
in Figure 1 is:

τ = ml2q̈ +mgl sin(q) (8)

Fig. 1. Simple pendulum without friction

The simple pendulum of Figure 1 has 1 degree of freedom (n = 1), q = θ is the
angular position, q̇ = θ̇ is the angular velocity, q̈ = θ̈ is the angular acceleration,
the mass value was taken as m = 1 Kg and the length as l = 1 m, and the
inverse model (8) is in form (2).

Case 2: Pendubot.

The inverse dynamic model of the ideal Pendubot shown in Figure 2 is:

τ1 = [m1l
2
c1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2 cos(q2) + I1 + I2]q̈1

+[m2l
2
c2 + 2m2l1lc2 cos(q2) + I2]q̈2 − 2m2l1lc2 sin(q2)q̇1q̇2

−m2l1lc2 sin(q2)q̇22 + [m1lc1 +m2l1]g sin(q1) +m2glc2 sin(q1 + q2)

τ2 = [m2l
2
c2 + 2m2l1lc2 cos(q2) + I2]q̈2 + [m2l

2
c2 + I2]q̈2

+m2l1lc2 sin(q2)q̇21 +m2glc2 sin(q1 + q2)

(9)

The ideal pendubot of Figure 2 has 2 degrees of freedom (n = 2), qi is the
angular position, q̇i is the angular velocity, q̈i is the angular acceleration for each
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Fig. 2. Pendubot

degree of freedom respectively, the parameter values were taken as m1 = 5Kg,
m2 = 3Kg, l1 = 1m, l2 = 1m, I1 = 0.004Kg/m2, I2 = 0.006Kg/m2, lc1 = 0.5m
y lc2 = 0.5m, and the equations of inverse model (9) are the components of
Compact Form (2).

Case 3: 3D Cartesian Manipulator.

The inverse dynamic model of a 3D cartesian manipulator shown in Figure 3
is:

τ1 = [m1 +m2 +m3]q̈1 + [m1 +m2 +m3]g

τ2 = [m1 +m2]q̈2 (10)

τ3 = m1q̈3

The 3D cartesian manipulator of Figure 3 has 3 degrees of freedom (n = 3),
qi is the articular position, q̇i is the articular velocity, q̈i is the articular acceler-
ation for each degree of freedom respectively, the parameter values were taken
as m1 = 1.5Kg, m2 = 1Kg, m3 = 3Kg, and the equations of inverse model (10)
are the components of Compact Form (2).

4 Simulation Results

In this section, simulation results from using the PSO algorithm to estimate the
torque or force of the 3 cases presented in the section above are illustrated.
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Fig. 3. 3D Cartesian manipulator

The computational experiments with the PSO algorithm for the 3 cases was
done in Matlab c©. The behaviour parameters of the programed PSO are the
inertia weight w = 0.5, the cognitive learning rate c1 = 0.35 and the social
learning rate c2 = 0.35.

Case 1: Simple pendulum.

The PSO algorithm was run with a population of 200 particles and 100 cycles.
In Table 1 the torques τ corresponding to position q and acceleration q̈ values
of inverse dynamic model (8) are shown. In Table 2 the torque τ̂ , position q̂ and
acceleration ¨̂q values computed from PSO algorithm minimizing the fitness (7)
are shown.

Table 1. Position, acceleration and torque values from model (8)

q q̈ τ

30 .15 15.165
60 .15 25.9371
90 .15 29.88
120 .15 25.9371
150 .15 15.165
180 .15 0.45
210 .15 -14.265
240 .15 -25.0371
270 .15 -28.98
300 .15 -25.0371
330 .15 -14.265
360 .15 0.45
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Table 2. Position, acceleration and torque estimated values from PSO

q̂ ¨̂q τ̂

24.4735 1 15.192
128.7704 1 25.9454
66.0566 1 29.8975
64.953 -0.2441 25.9302

149 0 15.1576
185 1 0.435
209 0 -14.2679

252.2604 1 -25.0306
256 0 -28.5558

237.0218 -0.1149 -25.0377
209 0 -14.2679
185 1 0.435

In Figure 4, the torque values τ and their estimated τ̂ are shown for angular
positions q from 0◦ to 360◦. The blue line represents the actual torque τ for the
different positions of the pendulum with the known position q, velocity q̇ and
acceleration q̈. The red line is the torque estimated τ̂ with the estimated position
q̂, velocity ˙̂q and acceleration ¨̂q. It can be seen that 90 and 270 degrees are values
such that more torque is required because the pendulum is in horizontal position.

Fig. 4. Torque comparison of pendulum

Case 2: Pendubot.
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The PSO algorithm was run with a population of 600 particles and 100 cycles.
In Table 3 the torques τ1, τ2 corresponding to position q1, q2, velocity q̇1, q̇2 and
acceleration q̈1, q̈2 values of inverse dynamic model (9) are shown. In Table 4 the
torque τ̂1, τ̂2, position q̂1, q̂2 and acceleration ¨̂q1, ¨̂q2 values computed from PSO
algorithm minimizing the fitness (7) are shown.

In Figure 5, the torque values τ1, τ2 and their estimated τ̂1, τ̂2 are shown
for angular positions q1, q2 from 0◦ to 180◦. The blue line represents the actual
torque τi for the different positions of the pendubot with the known position
q1, q2, velocity q̇1, q̇2 and acceleration q̈1, q̈2. The red line is the torque estimated
τ̂1, τ̂2 with the estimated position q̂1, q̂2, velocity ˙̂q1, ˙̂q2 and acceleration ¨̂q1, ¨̂q2.
In the Figure 5 can be seen that desired torque and the torque estimated are
almost identical. The joint 1 requires more torque because it is the joint where
the weight of both links rests.

Table 3. Position, velocity, acceleration and torque values from model (9)

q1 q2 q̇1 q̇2 q̈1 q̈2 τ1 τ2
0 0 0.2 0.15 0 0 0 0
0 180 0.2 0.15 0 0 0 0
20 0 0.2 0.15 0 0 5.0328 5.0328
40 0 0.2 0.15 0 0 9.4586 9.4586
60 20 0.2 0.15 0 0 32.9028 14.512
80 40 0.2 0.15 0 0 47.3456 12.7821
100 60 0.2 0.15 0 0 51.6521 5.0848
120 80 0.2 0.15 0 0 47.9806 -4.9737
140 100 0.2 0.15 0 0 40.2699 -12.6845
160 120 0.2 0.15 0 0 32.1278 -14.4395
160 140 0.2 0.15 0 0 21.8585 -12.705
180 120 0.2 0.15 0 0 33.8757 -12.6916
180 140 0.2 0.15 0 0 25.1434 -9.4201
180 160 0.2 0.15 0 0 13.3785 -5.0123
180 180 0.2 0.15 0 0 0 0

Case 3: 3D Cartesian Manipulator

The PSO algorithm was run with a population of 800 particles and 100 cycles.
In Table 5 the forces τ1, τ2, τ3 corresponding to acceleration q̈1, q̈2, q̈3 values of
inverse dynamic model (10) are shown. In Table 6 the force τ̂1, τ̂2, τ̂3 and acceler-
ation ¨̂q1, ¨̂q2, ¨̂q3 values computed from PSO algorithm minimizing the fitness (7)
are shown.

In Figure 6, the force values τ1, τ2, τ3 and their estimated τ̂1, τ̂2, τ̂3 are shown
for different articular acceleration values q̈1, q̈2, q̈3. The blue line represents the
actual force τi for the different known accelerations q̈1, q̈2, q̈3 of the cartesian
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Table 4. Position, velocity, acceleration and torque estimated values from PSO

q̂1 q̂2 ˙̂q1 ˙̂q2 ¨̂q1 ¨̂q2 τ̂1 τ̂2
0 0 1 0 0 0 -0.03 -0.01
0 0 1 0 0 0 -0.03 -0.01
16 0 1 0 -0.1 1 5. 4.59
320 180 0 0 0 0 9.45 9.45
310 160 0 0 0 0 32.28 13.82

76.95 46.3 1 1 -0.3 1 47.39 13.5
89 74 1 1 0 0 51.84 5.74
236 91 1 1 1 1 47.12 -5.02
194 82 1 1 1 0 39.76 -12.18
147 125 0 0 1 0 32.78 -14.81
238 33 0 0 1 0 22.19 -12.69
159 95.18 1 1 -0.3 1 34.04 -12.17
182 41.72 1 0 0 0 24.74 -9.59
55 154 1 1 0 1 13.95 -5.72
360 360 1 0 0 0 -0.03 -0.01

Fig. 5. Torque comparison of Pendubot
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manipulator. The red line is the force estimated τ̂1, τ̂2, τ̂3 with the estimated
accelerations ¨̂q1, ¨̂q2, ¨̂q3. It can be seen that desired force and the force estimated
are almost identical. The joint 1 requires more force because it is the joint where
supports the weight of entire robotic manipulator. The force in joint i-th only
depends on the acceleration i-th to perform the motion.

Table 5. Acceleration and force values from model (10)

q̈1 q̈2 q̈3 τ1 τ2 τ3
0 10 20 0.5396 25 30
0 20 0 0.5396 50 0
0 20 10 0.5396 50 15
10 0 10 60.5395 0 15
10 0 20 60.5395 0 30
10 10 0 60.5395 25 0
20 0 20 120.5396 0 30
20 10 0 120.5396 25 0
20 10 10 120.5396 25 15
20 10 20 120.5396 25 30

Table 6. Acceleration and force estimated values from PSO

¨̂q1 ¨̂q2 ¨̂q3 τ̂1 τ̂2 τ̂3
0 11 23 0.5396 27.5 33.5
0 20 1 0.5396 50 1.5
0 19 7 0.5396 47.5 13.5

10.3864 0 9.8226 62.8579 0 14.7338
10 0 21 60.5395 0 31.5
10 10 0 60.5395 25 0
20 0 18 120.5396 0 28
20 10 2 120.5396 25 2
20 10 11 120.5396 25 16
20 10 20 120.5396 25 30

5 Conclusions

Due to Forward Dynamic Model is difficult to obtain; a time-efficient, easily
implemented, and flexible method based on Particle Swarm Optimization was
applied to estimation of robot dynamics. As was shown through of simulations
for a simple pendulum, pendubot and 3D cartesian manipulator, the estimation
of dynamic variables (position, velocity, acceleration and torque) is very effective

42

Carlos Alberto Yahir Hervert Cano, Angel Rodríguez-Liñán, Luis M. Torres-Treviño

Research in Computing Science 68 (2013)



Fig. 6. Force comparison of 3D Cartesian manipulator

and precise. This method is easily executable for any user without no great robot
dynamics knowledge for any manipulator with an arbitrary number of degrees
of freedom. As future works are considered the parameter estimation (mass,
length, Coulomb friction, viscous friction) when dynamic variables are known
and position control of manipulator using PSO.
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